Pilot Valves for Air Compressors Type: ARC

Application:

For On/Off regulation controlled by the delivery pressure of a compressor.

As pressure switch in pneumatic installations.

As a pilot valve to activate 2-way valves, spool valves or butterfly valves.

Operation

When the pressure which is to be controlled reaches the upper limit, Inlet E (at bottom of instrument) is connected to Outlet A. The venting hole R is then closed. If the monitoring pressure reaches the lower limit, Outlet A is connected with the venting hole (R). At the same time Inlet E is being closed. Both switching positions are obtained via a snap action movement of the ball (9).

Attention! Never attempt to disassemble a cylinder whilst under pressure!

Schematic figure

Executions

Executions	All pressures quoted in bar gauge		
Working pressure	European execution	American execution	
range	Withworth thread	NPTF/NPSF thread	
cut-out pressure	(europ.standard)	(US-standard)	
2 - 10 bar (g)	ARC-E10	ARC-A10	
10-30 bar (g)	ARC-E30	ARC-A30	
30 - 50 bar (g)	ARC-E50	ARC-A50	

On/Off regulation of compressors:

By reaching the *cut-out pressure* (maximum delivery pressure) the pilot valve activates the unloading devices on the compressor and thereby switches it to zero load. When the pressure falls to the cutin level (minimum delivery pressure), the unloading devices are vented via the pilot valve and the compressor reverts to full load.

Adjustment:

Before delivery, the pilot valves are adjusted to the cut-out and cut-in pressures. Please state the pressures in your order. Cut-out pressure (upper switching point) Loose lock nut (5) and turn screw (3) clockwise to raise the pressure. The readjustment range is limited by the execution of

the upper part (2) and the spring (8).

Cut-in pressure (lower switching point)

Adjustment via differential pressure between cut-out and cut-in pressure (= cut-out pressure minus cut-in pressure). The differential pressure between upper and lower switching

point is increased by removing some of the shims, (6) or (7). The cut-out pressure (upper switching point) has to be readjusted. The readjustment range is limited by the recommended lift of the ball (9) (0.2 to 1 mm).

Readjustment check:

After each readjustment both upper and lower switching points have to be checked. If the pilot valve shows a shift of the adjusted settings due to strong external vibrations, readjust it on the running compressor.

Ordering details:

Type, Cut-out/Cut-in pressure (Accessories).

HOERBIGER Kompressortechnik GmbH D-86956 Schongau, Im Forchet 5 Phone +49 (0) 88 61 210-0, Fax +49 (0) 88 61 210-3273 Mail: info-rcc@hoerbiger.com www.hoerbiger.com

Details

Detalls					
Туре	Fig.1	ARC-E10	ARC-E30	ARC-E50	
	Fig.2	ARC-A10	ARC-A30	ARC-A50	
Nominal diameter DN	mm	6			
Max. working pressure PS	bar (g)	10	30	50	
Design		3/2 way valve (ball valve)			
Operating pressure range	bar (g)	2 to 10	≥ 10 to 30	≥ 30 to 50	
Differential pressure	bar (g)	Diagram 1	Diagram 2	Diagram 3	
(cut-out pressure minus					
cut-in pressure)1)					
Reproducibility of	%	± 2 of actual cut-out pressure			
adjusted pressures					
Volume flow V_N	m³/h	4.5 at 10 bar (g)			
Maximum Volume of	cm ³	up to 500			
unloader gear connected to					
Outlet A (recommended)					
Medium		oily pressurized air, filtered • recommended compressed air quality according to			
		DIN ISO 8573-1, class 5 • Reference oil: see www.hoerbiger.com			
Ambient temperature	°C	up to +200			
Air temperature					
Connections		see figs. 1 and 2			
Installation attitude		optional			
Standard materials		Brass, corrosion-resistant steel			
Weight	kg	0.16			

¹⁾ We shall select the optimum combination of components for the requested cut-out/cut-in pressure. For both ranges shown in diagrams 1, 2 and 3, several combinations of components can be chosen.

Pressure differential ARC-.10

Pressure differential ARC-.30

Dimensions (in)

Pressure differential ARC-.50

Adaptors:

G1/8 for European execution (ARC-E) can be supplied if no screw connection with short thread is available. For American executions ARC-A screw connections with tapered NPTF thread are used without adaptors.

Other ARC pilot valves:

Types ARC-A and ARC-T without handunloading device, other customer specific types upon request.

HOERBIGER can not grant any warranty for the correctness of technical or other data in catalogues, brochures and other printed material. HOERBIGER reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed.