Apmilosense

O2-A3 Oxygen sensor

Top View

Bottom View

Sensing area Do not obscure

O2-A3 123:

$\not{ }^{\circ} 1.5$
0.25 Recess

Side View

Dimensions are in millimetres $(\pm 0.15 \mathrm{~mm})$.

Performance	Output	$\mu \mathrm{A} @ 22^{\circ} \mathrm{C}, 20.9 \% \mathrm{O}_{2}$		
Response time	$+90(\mathrm{~s})$ from 20.9% to $0 \% \mathrm{O}_{2}$ (47W load resistor)			
Zero current	$\mu \mathrm{A} @ 99.99 \% \mathrm{~N}_{2}, 22^{\circ} \mathrm{C}$		\quad	55 to 85
:---				
<15				

Lifetime Output drift
Operating life
\% change in output @ 3 months
<2
Months until 85% original output in $20.9 \% \mathrm{O}_{2}$
>36

Environmental

Humidity sensitivity
CO_{2} sensitivity
Pressure sensitivity
$\% \mathrm{O}_{2}$ change: 0% to 95% rh @ $40^{\circ} \mathrm{C}<0.7$
\% change in output / \% CO CO_{2} @ $5 \% \mathrm{CO}_{2}$

+ 0.1
(\% change of output)/(\% change of pressure) @ $20 \mathrm{kPa}<0.1$

Key Specifications

Temperature range $\quad{ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$
kPa
\% rh non-condensing (0 to 99\% rh short term)
80 to 120
$\begin{array}{llr}\text { Storage period } & \text { Months @ } 3 \text { to } 20^{\circ} \mathrm{C} \text { (store in sealed container) } & 6 \\ \text { Load resistor } & \Omega \text { (recommended) } & 47 \text { to } 100\end{array}$
mm (including foam ring)
17.4
-30 to 55

5 to 95
$\begin{array}{llr}\text { Storage period } & \text { Months @ } 3 \text { to } 20^{\circ} \mathrm{C} \text { (store in sealed container) } & 6 \\ \text { Load resistor } & \Omega \text { (recommended) } & 47 \text { to } 100\end{array}$
Height
Weight
g

Apollosense

Figure 1 Temperature Dependence in Air

Figure 1 shows the variation of output caused by changes in temperature in 20.9% oxygen. The mean and $\pm 95 \%$ confidence intervals are shown.

All capillary oxygen sensors show a change in signal with temperature. The repeatable 95% confidence intervals for the O2-A3 are shown.

Figure 2 Pressure Step Performance

Figure 2 shows how a 25 kPa pressure step change causes a signal transient that decays reproducibly. Negative pressure changes cause a negative transient.
The small shift in final output is less than 10% of the pressure change, so 10 kPa pressure step shifts output by less than 1% ($<0.2 \%$ oxygen).

Figure 3 Long Term Stability

Mass flow Oxygen sensors show excellent long-term stability. Regular calibration is not necessary so long as temperature compensation is correct.

Shenzhen:	Hong Kong:
Adress : Room 712, Huaneng Building, Shennan Zhong Road, Shenzhen 518031, China Adress : Unit 1502, Hollywood Plaza, 610 Nathan Road, Mong Kok, KIn., H.K. Tel : (86-755) 83680810836808208368083083680860 Tel : (852) 27370903 Fax: $(86-755) 83680866$ Fax : (852) 27370938	

