

Power analyzer

CVM-C5-ITF-485 CVM-C5-MC-485 CVM-C5-mV-485

INSTRUCTION MANUAL

(M026B01-03-16C)

SAFETY PRECAUTIONS

Follow the warnings described in this manual with the symbols shown below.

DANGER

Warns of a risk, which could result in personal injury or material damage.

ATTENTION

Indicates that special attention should be paid to a specific point.

If you must handle the unit for its installation, start-up or maintenance, the following should be taken into consideration:

Incorrect handling or installation of the unit may result in injury to personnel as well as damage to the unit. In particular, handling with voltages applied may result in electric shock, which may cause death or serious injury to personnel. Defective installation or maintenance may also lead to the risk of fire.

Read the manual carefully prior to connecting the unit. Follow all installation and maintenance instructions throughout the unit's working life. Pay special attention to the installation standards of the National Electrical Code.

Refer to the instruction manual before using the unit

In this manual, if the instructions marked with this symbol are not respected or carried out correctly, it can result in injury or damage to the unit and /or installations.

CIRCUTOR, SA reserves the right to modify features or the product manual without prior notification.

DISCLAIMER

CIRCUTOR, SA reserves the right to make modifications to the device or the unit specifications set out in this instruction manual without prior notice.

CIRCUTOR, SA on its web site, supplies its customers with the latest versions of the device specifications and the most updated manuals.

www.circutor.com

CONTENTS

SAFETY PRECAUTIONS	3
DISCLAIMER	3
CONTENTS	4
REVISION LOG	6
1 VERIFICATION UPON RECEPTION	7
2 PRODUCT DESCRIPTION	7
3 UNIT INSTALLATION	8
3.1 PRIOR RECOMMENDATIONS	8
3.2 INSTALLATION	8
3.3 UNIT TERMINALS	9
3.3.1 Model CVM-C5-xxx-485-C	9
3.3.2 Model CVM-C5-xxx-485-I	10
3.4 CONNECTION DIAGRAMS	11
3.4.1 Three-phase network measuring with a 4-wire connection, model CVM-C5-IFF-485 and	
CVM-C5-mV-485	11
3.4.2 Three-phase network measuring with a 4-wire connection, model CVM-C5-MC-485	12
3.4.3 Three-phase network measuring with a 3-wire connection, models CVM-C5-ITF-485 and	
CVM-C5-mV-485.	13
3.4.4 Three-phase network measuring with a 3-wire connection . model CVM-C5-MC-485	14
3.4.5 Three-phase network measuring with a 3-wire connection and transformers in an ARON	
connection.	15
3.4.6 Two-phase network measuring with a 3-wire connection	16
3.4.7 Phase-to-phase single-phase network measuring with a 2-wire connection	17
3.4.8 Phase-to-neutral single-phase network measuring with a 2-wire connection	18
4 OPERATION	19
4.1 MEASURING PARAMETERS	. 19
4.2 KEYBOARD FUNCTIONS	
4.3 - DISPLAY	21
4.3.1 Consumption data area	21
4.3.2 Instantaneous data area	24
44 - TARIFFS	27
4.5 - DIGITAL OUTPUT (Model CVM-C5-xxx-RS485-C)	27
4 6 - PROGRAMMING	28
4 6 1 Primary voltage	28
4.6.2 Secondary voltage	29
4.6.3 Primary current	29
4.6.4. Secondary current (only the model CVM-C5-ITE-485)	30
4 6 5 Measurement system	30
4.6.6 Ratio of kgC0, carbon emissions for Tariff 1	31
467 Cost Ratio for Tariff 1	31
4.6.8 Ratio of kgCO carbon emissions for Tariff 2	32
469 Cost Ratio for Tariff 2	32
4.6.10 Maximum demand variable	33
4.6.11 Period of maximum demand integration	
4.6.12 Deleting maximum demand	34
4.6.12. Default screen	34
4.6.14 Display backlight	34
4.6.15 Programming the digital output (Model CVM-C-yyy-RS485-C)	35
4.6.16. Deleting energy meters	
4.6.17 Deleting maximum and minimum values	39
4.6.18 Modbus communications : Default narameters	39
4 6 19 Modbus communications · Perinheral number	39
4 6 20 Modbus communications · Transmission sneed	<u>4</u> 0
4 6 21 Modbus communications · Parity	<u>40</u>
4 6 22 Modbus communications · Number of data bits	<u>40</u>
4.6.23 Modbus communications · Number of Ston hits	<u>л</u>
4 6 24 Locking the programming	<u>41</u>
4 6 25 Password	<u></u>
47-COMMUNICATIONS	<u></u>

4.7.1. Connections	
4.7.2. Protocol	43
4.7.3. Exemple modbus question	
5 TECHNICAL FEATURES	
6 MAINTENANCE AND TECHNICAL SERVICE	
7 GUARANTEE	
8 CE CERTIFICATE	

REVISION LOG

Date	Revision Description		
12/15	M026B01-03-15A	Initial Version	
01/16	M026B01-03-16A	Changes in the following sections: 4 4.6.15 4.7.2.2.	
03/16	M026B01-03-16B	Changes in the following sections: 3.2 5.	
05/16	M026B01-03-16C	Changes in the following sections: 4.6.15 8.	

Table 1: Revision log.

Note : Device images are for illustrative purposes only and may differ from the actual device.

1.- VERIFICATION UPON RECEPTION

Check the following points when you receive the device:

- a) The device meets the specifications described in your order.
- b) The device has not suffered any damage during transport.
- c) Perform an external visual inspection of the device prior to switching it on.
- d) Check that it has been delivered with the following:
 - An installation guide,
 - 2 Retainers for subsequent attachment of the device

If any problem is noticed upon reception, immediately contact the transport company and/or **CIRCUTOR's** after-sales service.

2.- PRODUCT DESCRIPTION

The **CVM-C5-xxx-485** device measures, calculates and displays the main electrical parameters of the following networks: single-phase, two-phase, with and without neutral, balanced three-phase, with ARON measurements or unbalanced. The measurement will be taken in RMS with the three AC voltage inputs and three current inputs.

There are 3 versions of the team based on the current input:

✓ CVM-C5-ITF-485, indirect measure current with transformers /5A and /1A.

✓ **CVM-C5-MC-485**, indirect measure current with efficient transformers series MC1 and MC3.

✓ CVM-C5-mV-485, indirect measure current with transformers /0.333V.

The device features:

- 3 keys that allow you to browse between the various screens and program the device.
- LCD Display to display all the parameters,
- 1 digital input to select the tariff (Model CVM-C5-xxx-485-I).
- 1 programmable digital output to act as a pulse or alarm output.
- (Model **CVM-C5-xxx-485-C**)
- RS-485 communications, MODBUS RTU©.

3.- UNIT INSTALLATION

3.1.- PRIOR RECOMMENDATIONS

In order to use the device safely, it is critical that individuals who handle it follow the safety measures described in the standards of the country where it is being used, use the necessary personal protective equipment, and pay attention to the various warnings indicated in this instruction manual.

The CVM-C5 device must be installed by authorised and qualified staff.

The power supply plug must be disconnected and measuring systems switched off before handling, altering the connections or replacing the device. It is dangerous to handle the device while it is powered.

Also, it is critical to keep the cables in perfect condition in order to avoid accidents, personal injury and damage to installations.

The manufacturer of the device is not responsible for any damage resulting from failure by the user or installer to heed the warnings and/or recommendations set out in this manual, nor for damage resulting from the use of non-original products or accessories or those made by other manufacturers.

In the event an anomaly or malfunction is detected in the device, refrain from using it to take any measurements.

Inspect the work area before taking any measurements. Do not take measurements in dangerous areas or where there is a risk of explosion.

Disconnect the device from the power supply (device and measuring system power supply) before maintaining, repairing or handling the device's connections. Please contact the after-sales service if you suspect that there is an operational fault in the device.

3.2.- INSTALLATION

The device will be installed on a panel ($92^{+0.8} \times 92^{+0.8}$ mm panel drill hole, in compliance with DIN 43700). All connections are located inside the electric panel.

Terminals, opening covers or removing elements can expose parts that are hazardous to the touch while the device is powered. Do not use the device until it is fully installed.

The device must be connected to a power circuit that is protected with gl (IEC 269) or M type fuses with a rating of 0.5 to 2 A. It must be fitted with a circuit breaker or equivalent device, in order to be able to disconnect the device from the power supply network.

The secondary line of the current transformer will have a minimum cross-section of 2.5 mm².

The temperature rating of insulation of wires connected to the device will be at minimum 62°C.

3.3.- UNIT TERMINALS

3.3.1.- Model CVM-C5-xxx-485-C

Device terminals			
1 : Auxiliary Power Supply	10: V _{L3} , L3 voltage input		
2: Auxiliary Power Supply	11: N, neutral		
3: SO+, Transistor output	12: S₁ , L1 current input		
4: SO-, Transistor output	13: S ₂ , L1 current input		
5: A(+) , RS485	14: S ₂ , L1 current input		
6: B(-) , RS485	15: S ₂ , L2 current input		
7: GND, for RS485	16: S ₁ , L3 current input		
8: V _{L1} , L1 voltage input	17: S ₂ , L3 current input		
9: V _{L2} , L2 voltage input			

Table 2:List of CVM-C5-xxx-485-C terminals.

Figure 1: CVM-C5-xxx-485-C terminals.

CIRCUTOR

3.3.2.- Model CVM-C5-xxx-485-I

CIRCUTOR

Device terminals			
1 : Auxiliary Power Supply	10: V _{L3} , L3 voltage input		
2: Auxiliary Power Supply	11: N, neutral		
3: Digital input	12: S ₁ , L1 current input		
4: Digital input	13: S₂, L1 current input		
5: A(+) , RS485	14: S ₂ , L1 current input		
6: B(-) , RS485	15: S ₂ , L2 current input		
7: GND, for RS485	16: S ₁, L3 current input		
8: V _{L1} , L1 voltage input	17: S ₂ , L3 current input		
9: V _{L2} , L2 voltage input			

Table 3:List of CVM-C5-xxx-485-I terminals.

Figure 2: CVM-C5-xxx-485-I terminals.

3.4.- CONNECTION DIAGRAMS

3.4.1.- Three-phase network measuring with a 4-wire connection, model CVM-C5-IFF-485 and CVM-C5-mV-485.

Figure 3: Three-phase measuring with a 4-wire connection, model CVM-C5-ITF-485 and CVM-C5-mV-485.

3.4.2.- Three-phase network measuring with a 4-wire connection, model CVM-C5-MC-485

Measurement system : 4 - 3Ph

Figure 4: Three-phase measuring with a 4-wire connection, model CVM-C5-MC-485.

Measurement system: 3 - 3Ph

Figure 5: Three-phase measuring with a 3-wire connection, models CVM-C5-ITF-485 and CVM-C5-mV-485.

CIRCUTOR

3.4.4.- Three-phase network measuring with a 3-wire connection, model CVM-C5-MC-485.

Measurement system: 3 - 3Ph

Figure 6:Three-phase network measuring with a 3-wire connection, modelo CVM-C5-MC-485.

0 Power Supply \cap $\oslash \overline{\it O}$ \langle / \rangle SHOHOF bНс OUTPUT RS485 $\underbrace{ \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{G} \\ \mathbf{A} & \mathbf{B} & \mathbf{B} \\ \mathbf$ Ph-N 300V~ Ph-Ph 520V~ VL3 N 000 $V_{\rm L2}$ #OHOHOHOHOHOHO **Q**O ę _ = = _ VL2 VL1 VL2 I VL3 V_{L1} VL3 L1 L2 51**6 6**52 L3 LOAD

Measurement system: 3 - 8 - 00

Figure 7: Three-phase measuring with a 3-wire connection and transformers in an ARON connection.

CIRCUTOR

3.4.6.- Two-phase network measuring with a 3-wire connection.

CIRCUTOR

Measurement system: 3 - 2 P h

Figure 8: Two-phase measuring with a 3-wire connection.

Figure 9: Phase-to-phase single-phase measuring with a 2-wire connection.

CIRCUTOR

3.4.8.- Phase-to-neutral single-phase network measuring with a 2-wire connection

Measurement system: 2 - IPh

Figure 10: Phase-to-neutral single-phase measuring with a 2-wire connection.

4.- OPERATION

The **CVM-C5** is a power analyzer in four quadrants (consumption and generation).

Figure 11: Four quadrants of CVM-C5.

4.1.- MEASURING PARAMETERS

The device displays the electrical parameters shown in Table 4.

Parameter	Units	Maximum value	Minimum value		
Phase – neutral voltage	Vph-n	9999	10.0		
Phase-phase voltage	Vph-ph	9999	10.0		
Current	A	9999	0.05		
Frequency	Hz	65	45		
Active Power	kW	9999	0.01		
Inductive Reactive Power	kvarL	9999	0.01		
Capacitive Reactive Power	kvarC	9999	0.01		
Apparent Power	kVA	9999	0.01		
Power factor	PF	-0.99	0.99		
Cos φ	φ	-0.99	0.99		
THD % voltage	% THD V	999.9	000.0		
THD % current	% THD A	999.9	000.0		
Total Active Energy Consumed Tariff 1	kWh	999999	000.000		
Total Active Energy Generated Tariff 1	kWh	999999	000.000		
Inductive Reactive Energy Consumed Tariff 1	kvar [∟] h	999999	000.000		
Inductive Reactive Energy Generated Tariff 1	kvar [∟] h	999999	000.000		
Capacitive Reactive Energy Consumed Tariff 1	kvar _c h	999999	000.000		
Capacitive Reactive Energy Generated Tariff 1	kvar _c h	999999	000.000		
Total Apparent Energy Tariff 1	kVAh	999999	000.000		
Total Active Energy Consumed Tariff 2	kWh	999999	000.000		
Total Active Energy Generated Tariff 2	kWh	999999	000.000		

Table 4: CVM-5 measuring parameters.

Parameter	Units	Maximum value	Minimum value
Inductive Reactive Energy Consumed Tariff 2	kvar [∟] h	999999	000.000
Inductive Reactive Energy Generated Tariff 2	kvar [∟] h	999999	000.000
Capacitive Reactive Energy Consumed Tariff 2	kvar _c h	999999	000.000
Capacitive Reactive Energy Generated Tariff 2	kvar _c h	999999	000.000
Total Apparent Energy Tariff 2	kVAh	999999	000.000
No. of hours Tariff 1	hours	99999.9	0.00000
No. of hours Tariff 2	hours	99999.9	0.00000
Cost Tariff 1	COST	9999.99	0000.00
Cost Tariff 2	COST	9999.99	0000.00
CO ₂ Emissions Tariff 1	kgCO ₂	9999.99	0000.00
CO ₂ Emissions Tariff 2	kgCO ₂	9999.99	0000.00
Maximum Demand of Active power	kW	9999	0.01
Maximum Demand of Apparent Power	kVA	9999	0.01
Maximum Current Demand	A	9999	0.05

Table 4 (Continuation): CVM-5 measuring parameters.

4.2.- KEYBOARD FUNCTIONS

The **CVM-C5** has 3 keys that allow you to browse between the various screens and program the device.

The first keystroke on any of the keys after a period of inactivity switches on the backlight. Key functions on measuring screens (**Table 5**):

Кеу	Short keystroke	Long keystroke (2 s)	
\langle	Previous screen of the in- stant data area	Display of minimum value	
\rightarrow	Next screen of the instant data area	Display of maximum value	
	Browsing the different screens of the consumption data area	Accessing the programming menu	
$\langle \rangle$		Display of the Maximum Demand programmed and selected.	

Table 5: Key functions on measuring screens.

Key functions in the programming menu (Table 6):

Table 6: Key functions in the programming menu.

Key	Keystroke
<	Moves an editable digit (flashing)
	Increases the digits (0-9) or rotates between the different options.
\rightarrow	Next page

4.3.- DISPLAY

The device has a backlit LCD display showing all the parameters listed in Table 4.

The display is divided into two areas (Figure 12):

✓ The **consumption data** area showing consumption parameters.

 \checkmark The **instantaneous data** area showing the maximum and minimum instantaneous values being measured or calculated by the device.

Figure 12: CVM-C5 display areas.

4.3.1. CONSUMPTION DATA AREA

The device has 22 different screens in the consumption data area (Table 7).

Screen	Units
Total active energy generated Tariff 1	kWh
Inductive reactive energy generated Tariff 1	kvar [⊾] h
Capacitive reactive energy generated Tariff 1	kvar _c h

Table 7: Consumption data area screens.

Table 7 (Continuation): Consumption data area screens.			
Screen	Units		
CO, Emissions Tariff 2	kgCO2		
Cost Tariff 2			
T2 000000	COST		
No. of hours Tariff 2			
T2 0000000	hours		
Total active energy consumed Tariff 2			
T2000000	kWh		
Inductive reactive energy consumed Tariff 2			
T2 000000	kvar└h		
Capacitive reactive energy consumed Tariff 2			
T2	kvar _c h		
Total apparent energy consumed Tariff 2			
T2 000000	kVAh		

With the 🔳 key we can browse between the different screens.

The symbols **T1** and **T2** that appear on the display indicate the selected tariff and the tariff being displayed, according to **Table 10**.

4.3.2. INSTANTANEOUS DATA AREA

To browse through the different screens that appear in the instantaneous data area, you have to use the formation and formation keys.

This data area has 13 different screens, Table 8.

Table O.	01/14 05			
Table 8:	C V IVI-C 5	Instantaneous	data	screens

Measurement system	Scre	Units	
4-3Ph 3-3Ph 3-8-00 3-2Ph 2-2Ph 2-1Ph 2-1Ph	Voltage Phase L1- Phase L2 Voltage Phase L2- Phase L3 Voltage Phase L3- Phase L1	L1/2 4028 L2/3 4009 L3/1 4030 V	V
4-3Ph 3-3Ph 3-8-00 3-2Ph 2-2Ph 2-1Ph	Voltage Phase - Neutral L1 Voltage Phase - Neutral L2 Voltage Phase - Neutral L3	L1 1025 L2 1003 L3 100 V	V
4-3Ph 3-3Ph 3-8-00 3-2Ph 2-2Ph 2-1Ph	Current L1 Current L2 Current L3	L1 503 L2 499 L3 501 A	A
4-3Ph 3-3Ph 3-Ar0N 3-2Ph 2-2Ph 2-1Ph 2-1Ph	Active power L1 Active power L2 Active power L3	L1 5.05 kW L2 5.03 L3 5.02	kW
4-3Ph 3-3Ph 3-Ar0N 3-2Ph 2-2Ph 2-1Ph 2-1Ph	Apparent power L1 Apparent power L2 Apparent power L3	L1 5.03 L2 5.02 L3 5.05 kVA	kVA
4-3Ph 3-3Ph 3-Ar0N 3-2Ph 2-2Ph 2-1Ph 2-1Ph	Inductive Reactive Power L1 Inductive Reactive Power L2 Inductive Reactive Power L3	L1 099 kvar L2 100 kvar L3 100 kvar	kvarL

Table 8 (Continuation): CVM-C5 instantaneous data screens				
Measurement system	Scree	n	Units	
4-3Ph 3-3Ph 3-8c00 3-2Ph 2-2Ph 2-2Ph 2-1Ph	Capacitive Reactive Power L1 Capacitive Reactive Power L2 Capacitive Reactive Power L3	L1 0.99 L2 100 kvar L3 100 kvar	kvarC	
4-3Ph 3-3Ph 3-Rr0N 3-2Ph 2-2Ph 2-1Ph	Power factor L1 Power factor L2 Power factor L3	L1 0.98 L2 0.99 L3 0.98 PF	PF	
4-3Ph 3-3Ph 3-8-00 3-2Ph 2-2Ph 2-1Ph	Active three-phase power Inductive Reactive three-phase Power Apparent three-phase power	12.30 kW 304 kvar 18.69 kVA	kW kvarL kVA	
4-3Ph 3-3Ph 3-8r00 3-2Ph 2-2Ph 2-2Ph 2-1Ph	Active three-phase power Capacitive Reactive three-phase Power Apparent three-phase power	12.30 kW 109 kvar 18.69 kVA	kW kvarC kVA	
4-3Ph 3-3Ph 3-R-00 3-2Ph 2-2Ph 2-2Ph 2-1Ph	Frequency Cos φ	50.00 Hz 0.50 cosp	Hz φ	
4-3Ph 3-3Ph 3-8-00 3-2Ph 2-2Ph 2-1Ph	THD Voltage L1 THD Voltage L2 THD Voltage L3	ЕНД L1 0.2 L2 0.3 V L3 0.3 V		
4 - 3Ph 3 - 3Ph 3 - Rr DN 3 - 2Ph 2 - 2Ph 2 - 2Ph 2 - 1Ph	THD Current L1 THD Current L2 THD Current L3			

<u>D</u>3

INST

Also displayed on these screens are:

✓ Maximum values

To see the maximum values of the screen being displayed, press the key for 2 seconds.

The **MAX** symbol appears on the display (**Figure 13**)

Figure 13: Instantaneous data screen displaying maximum values.

✓ Minimum values

To see the minimum values of the screen being displayed, press the key for 2 seconds.

The MIN symbol appears on the display (Figure 14)

Figure 14: Instantaneous data screen displaying minimum values.

✓ Maximum Demand

The device can calculate the maximum demand of:

- Active three-phase power,
- Apparent three-phase Power
- Current L1, L2 and L3.

Once the parameter to be integrated into the programming menu has been selected (**"4.6.10.** *Maximum demand variable"*), you can display it on the display screen for the parameter by pressing the simultaneously.

The **DEM** symbol appears on the display and flashes the calculated value of maximum demand (**Figure 15**)

Figure 15: Instantaneous data screen displaying the maximum demand value.

4.4.- TARIFFS

The **CVM-C5** has two tariffs, T1 and T2, which can be selected through a Modbus. See "4.7.2.1. Selecting the active tariff".

In the model **CVM-C5-xxx-485-I** can also be selected tariff via the digital input. Depending on the state of the input, see **Table 9**.

Table 9: Tariff selection.			
Tariff Digital input			
T1	0		
T2	1		

The symbols **T1** and **T2** that appear on the display in the consumption data area indicate the selected tariff and the tariff being shown according to **Table 10**.

Symbol	Display	Selected tariff
T1 flashing	Tariff 1	Tariff 1
T1 flashing T2 steady	Tariff 2	Tariff 1
T1 flashing	Tariff 2	Tariff 2
T2 flashing T1 steady	Tariff 1	Tariff 2

Table 10: Displaying tariffs on the display.

4.5.- DIGITAL OUTPUT (Model CVM-C5-xxx-RS485-C)

The model **CVM-C5-xxx-RS485-C** has an optoisolated NPN transistor (terminals 3 and 4 of **Figure 1**) that may be programmed as:

\checkmark A pulse output by kWh or kvarh.

✓ An **alarm** associated with a measurement parameter.

4.6.- PROGRAMMING

From the programming menu you can:

- ✓ Define the transformation ratios.
- \checkmark Program the ratio of kgCO₂ carbon emissions of the two tariffs.
- \checkmark Program the cost ratio of the two tariffs.
- ✓ Program the maximum demand parameters.
- ✓ Delete the energy meters and the maximum and minimum values.
- ✓ Modify the display's backlight.
- ✓ Program the digital output.
- ✓ Program the Modbus communications.

The **CVM-C5** does not record programming changes until the programming is complete. If the device is RESET before finishing the programming or no key is pressed for 30 seconds, the configuration will not be stored in the memory.

The CVM-C5 does not take any measurements during programming.

To enter the programming menu press the \blacksquare key for 3 seconds. And press \blacksquare to access the first programming point.

4.6.1. Primary voltage

On this screen the voltage transformer primary is programmed.

To enter or modify the transformer primary value, press the key repeatedly, increasing the value of the flashing digit. When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

To validate the information and go to the next programming step, press

If the value entered is greater than the maximum programming value, the digits flash for 2 seconds and the programmed value is deleted.

Maximum programming value: 99999. Minimum programming value: 0.

4.6.2. Secondary voltage

On this screen the voltage transformer secondary is programmed.

To enter or modify the voltage transformer secondary value, press the key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the key to go to the next digit and modify the other values.

If you press the key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

To validate the information and go to the next programming step, press

If the value entered is greater than the maximum programming value, the digits flash for 2 seconds and the programmed value is deleted.

Maximum programming value: 999. Minimum programming value: 0.

4.6.3. Primary current

On this screen the current transformer primary is programmed.

To enter or modify the transformer primary value, press the key repeatedly, increasing the value of the flashing digit. When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

To validate the information and go to the next programming step, press

If the value entered is greater than the maximum programming value, the digits flash for 2 seconds and the programmed value is deleted.

Maximum programming value: 9999. Minimum programming value: 0.

4.6.4. Secondary current (only the model CVM-C5-ITF-485)

On this screen the current transformer secondary is selected.

Use the key to jump between the two possible options for the current transformer secondary (1 A or 5 A).

To validate the information and go to the next programming step, press

Note: If the voltage ratio together with the programmed current ratio exceeds the maximum power value that can be measured by the device, it will return to the primary voltage programming step when you press the key.

Nota: To apply the change to the second current transformer is necessary to reset the computer.

4.6.5. Measurement system

- 4 3Ph Three-phase network measuring with a 4-wire connection.
- $\exists \exists Ph$ Three-phase network measuring with a 3-wire connection. $\exists Br \square \square$ Three-phase network measuring with a 3-wire connection and transformers in an **ARON** connection
- 3 2Ph Two-phase network measuring with a 3-wire connection.
- $\vec{c} \vec{c} \vec{P} \vec{h}$ Phase-to-phase single-phase network measuring with a 2-wire connection. $\vec{c} \vec{c} \vec{P} \vec{h}$ Phase-to-neutral single-phase network measuring with a 2-wire connection.

To validate the information and go to the next programming step, press

4.6.6. Ratio of kgC0₂ carbon emissions for Tariff 1

The carbon emissions ratio is the amount of emissions released into the atmosphere to produce a unit of electricity (1 kWh). The ratio for the European mix is approximately 0.65 kgCO₂ per kWh.

To enter or modify the emissions ratio value, press the 🔳 key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

To validate the information and go to the next programming step, press

If the value entered is greater than the maximum programming value, the digits flash for 2 seconds and the programmed value is deleted.

Maximum programming value: 9.999. Minimum programming value: 0.

4.6.7. Cost Ratio for Tariff 1

On this screen the cost per kWh of electricity of Tariff 1 is programmed.

To enter or modify the cost ratio value, press the key repeatedly, increasing the value of the flashing digit. When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

To validate the information and go to the next programming step, press

If the value entered is greater than the maximum programming value, the digits flash for 2 seconds and the programmed value is deleted.

Maximum programming value: 9.999. Minimum programming value: 0.

4.6.8. Ratio of kgCO, carbon emissions for Tariff 2

The carbon emissions ratio is the amount of emissions released into the atmosphere to produce a unit of electricity (1kWh). The ratio for the European mix is approximately 0.65 kgCO, per kWh.

To enter or modify the emissions ratio value, press the **E**key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

To validate the information and go to the next programming step, press >

If the value entered is greater than the maximum programming value, the digits flash for 2 seconds and the programmed value is deleted.

Maximum programming value: 9.999. Minimum programming value: 0.

4.6.9. Cost Ratio for Tariff 2

On this screen the cost per kWh of electricity of Tariff 2 is programmed.

To enter or modify the primary cost ratio value, press the 🔳 key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the Key to go to the next digit to modify the other values.

If you press the Key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

To validate the information and go to the next programming step, press If the value entered is greater than the maximum programming value, the digits flash for 2 seconds and the programmed value is deleted.

Maximum programming value: 9.999. Minimum programming value: 0.

4.6.10. Maximum demand variable

On this screen the variables to integrate into the Maximum Demand concept are selected.

The display shows the digits that identify that code for the variable to be integrated according to **Table 11**

Table 11: Codes for maximum demand variables			
Parameter	Code		
Active three-phase power	16		
Apparent three-phase power	34		
Three-phase current	36		
Current L1, L2, L3	A - ph		
None	00		

The 📕 key jumps between the different options.

To validate the information and go to the next programming step, press

4.6.11. Period of maximum demand integration

On this screen the maximum demand integration period is programmed.

To enter or modify the integration period value, press the key repeatedly, increasing the value of the flashing digit. When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

The integration period may range from 1 to 60 minutes. To validate the information and go to the next programming step, press

If the value entered is greater than the maximum programming value, the digits flash for 2 seconds and the programmed value is deleted.

🔳 CIRCUTOR

4.6.12. Deleting maximum demand

4.6.13. Default screen

On this screen you select whether or not to delete the maximum demand.

Use the 📕 key to jump between the two options (Yes and No).

To validate the information and go to the next programming step, press

On this screen the default or start-up instantaneous data screen (**Table 8**) for the **CVM-C5** is selected.

Press the key repeatedly until you see the default screen of your choice.

To validate the screen and go to the next programming step, press

The electrical parameters may also be displayed by automatically rotating through the 7 instantaneous data <u>scr</u>eens in 5-second intervals.

To do so press the 🔳 key repeatedly until the parameters flash;

To validate the rotating screen function and go to the next programming step, press

4.6.14. Display backlight

On this screen the time that the Backlight will stay lit (in seconds) after the last keystroke on the unit is programmed.

To enter or modify the backlight value, press the key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

The value 00 indicates that the backlight will stay permanently lit. The backlight time may range from 5 to 99 seconds.

To validate the information and go to the next programming step, press

4.6.15. Programming the digital output (Model CVM-C-xxx-RS485-C)

The CVM-C5 digital output may be programmed as:

✓ **Pulse by n kWh or kvarh (Energy)**: the value corresponding to the energy consumed or generated may be programmed, to generate a pulse.

 \checkmark Alarm condition: a magnitude may be associated with the digital output, setting a maximum, minimum and delay value for the trip condition.

If you do not wish to program a variable, put 00 and validate with the 🔛 key.

✓ Pulse programming by n kWh or kvarh

On this screen the energy code is selected based on **Table 12** for the energy you want the pulse output to generate.

The key jumps between the different options.

Parameter	Code
Active Energy III Tariff 1	31
Inductive Reactive Energy III Tariff 1	32
Capacitive Reactive Energy III Tariff 1	33
Apparent Energy III Tariff 1	48
Active Energy III Generated Tariff 1	49
Inductive Reactive Energy III Generated Tariff 1	50
Capacitive Reactive Energy III Generated Tariff 1	51
Apparent Energy III Generated Tariff 1	52
Active Energy III Tariff 2	55
Inductive Reactive Energy III Tariff 2	56
Capacitive Reactive Energy III Tariff 2	57
Apparent Energy III Tariff 2	58
Active Energy III Generated Tariff 2	59
Inductive Reactive Energy III Generated Tariff 2	60
Capacitive Reactive Energy III Generated Tariff 2	61
Apparent Energy III Generated Tariff 2	62
Active Energy Consumed (Regardless of the tariff selected)	99

Table 12: Codes for the different energy types.

Once an Energy code has been selected and validated using the key you must enter the kilowatts per pulse.

000.500 0...E PULS r REE

To enter or modify the kilowatts per pulse value, press the key repeatedly, increasing the value of the flashing digit. When the on-screen value is that desired, press the key to

When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after changing the last digit, it will jump back to the first digit so you can modify the previously programmed values again.

Example: To program 500 Wh per pulse: 000.500 To program 1.5 kWh per pulse: 001.500

Once the desired option has been programmed, press the key to validate the information and thereby finish programming the device.

Maximum programming value: 999999 KWh. Minimum programming value: 000.001 KWh.

✓ Programming by alarm condition

On this screen the parameter code for which you want an alarm to be generated is selected, based on **Table 13**.

The **E** key jumps between the different options.

Table 13: Parameter codes for alarm programming.

Parameter	Code	Parameter	Code
Voltage Phase - Neutral L1	01	THD voltage L3	27
Current L1	02	THD current L3	30
Active power L1	03	Active three-phase power	16
Inductive / Capative reactive power L1	04	Inductive Reactive three-phase power	17
Power factory L1	05	Capacitive Reactive three-phase power	18
THD voltage L1	25	Apparent three-phase power	34
THD current L1	28	Maximum demand	35
Voltage Phase - Neutral L2	06	Three-phase current	36
Current L2	07	Cos φ	19
Active power L2	08	Three-phase Power factory	20
Inductive / Capative reactive power L2	09	Frequency	21
Power factory L2	10	Voltage L1 - L2	22
THD voltage L2	26	Voltage L2 - L3	23
THD current L2	29	Voltage L3 - L1	24
Voltage Phase - Neutral L3	11	Maximum demand L1 ⁽¹⁾	35
Current L3	12	Maximum demand L2 ⁽¹⁾	42

Table 13 (Continuation): Parameter codes for alarm programming.

Parameter	Code	Parameter	Code
Active power L3	13	Power factory L3	15
Inductive / Capative reactive power L3	14	Maximum demand L3 (1)	43

⁽¹⁾ Parameter valid only if programmed the maximum demand current per phase.

In addition, there are some parameters (**Table 14**) that refer to the three phases at the same time (OR function). If you have selected one of these variables, the alarm will be activated when any of the three phases meets the programmed conditions.

Parameter	Code
Voltages Phase - Neutral	90
Currents	91
Active powers	92
Reactive powers	93
Power factor	94
Voltages Phase-Phase	95
THD V	96
THD A	97

Table 14:Multiple parameter codes for alarm programming.

Once an alarm code has been selected and validated with the rightarrow key you must enter the maximum value of the alarm condition.

The **maximum value**: above this value the transistor is closed.

To enter or modify the maximum value, press the key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after modifying the last digit the decimal point position will be programmed.

To validate the information and proceed to programming the minimum value, press 💌 .

The **minimum value**: below this value the transistor is closed. To enter or modify the minimum value, press the key repeatedly, increasing the value of the flashing digit. When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

If you press the key after modifying the last digit the decimal point position will be programmed.

To validate the information and proceed to programming the delay value, press 💌 .

This is where the device's connection and disconnection delay (in seconds) are programmed.

To enter or modify the delay value, press the 🔳 key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

Once the delay has been programmed, press the key to go to the next programming step. In **Table 15** we can see the functioning of the digital output based on the programmed maximum and minimum values.

 Table 15: Functioning of the digital output based on the programmed maximum and minimum values.

Minimum value	Maximum value.	Condition	Digital output functioning
Positive	Positive	MAX > MIN	ON OFF ON 0 MIN MAX
Positive	Positive	MAX < MIN	OFF ON OFF
Negative	Positive		ON OFF ON 0 MIN MAX
Positive	Negative		OFF ON OFF 0 MAX MIN
Negative	Negative	MAX > MIN	ON OFF ON HIN MAX 0
Negative	Negative	MAX < MIN	OFF ON OFF MAX MIN 0

4.6.16. Deleting energy meters

On this screen you select whether or not to delete the energy meters.

Use the key to jump between the two options (Yes and No).

To validate the information and go to the next programming step, press

4.6.17. Deleting maximum and minimum values

On this screen you select whether or not to delete the maximum and minimum values

Use the key to jump between the two options (Yes and No).

To validate the information and go to the next programming step, press

4.6.18. Modbus communications : Default parameters

On this screen you select whether we want to return to the default parameters of the Modbus communications. Default parameters: Peripheral number : 1 Transmission speed : 9600 Parity : No Number of data bits : 8 Number of Stop bits : 1

Use the key to jump between the two options: Yes or No

If you select the **Yes** option, the device jumps to step programming "4.6.24. Locking the programming"

To validate the information and go to the next programming step, press

4.6.19. Modbus communications : Peripheral number

The peripheral number is programmed on this screen.

To enter or modify the delay value, press the key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

To validate the information and go to the next programming step, press

The peripheral number ranges from **0** to **255**.

4.6.20. Modbus communications : Transmission speed

To validate the information and go to the next programming step, press

4.6.21. Modbus communications : Parity

The type of parity of Modbus communications is selected on this screen. The \blacksquare key jumps between the different options. $\neg \Box$, no parity $E \sqcup E \neg$, even parity. $\Box dd$, odd parity.

To validate the information and go to the next programming step, press

4.6.22. Modbus communications : Number of data bits

The number of data bits of Modbus communications are displayed on this screen: **8 bits**.

This parameter is not configurable.

To go to the next programming step, press

4.6.23. Modbus communications : Number of Stop bits

The number of Stop bits of Modbus communications are programmed on this screen.

Press key 🔳 to browse the options: 1 or 2 bits.

To validate the information and go to the next programming step, press

4.6.24. Locking the programming

This screen is for protecting the data configured in the programming menu.

Use the key to jump between the two options:

unlo

When you enter the programming menu you can view and modify the programming.

When you enter the programming you can view the programming but not modify it. . In order to modify the programming you need to enter a password.

To validate the information and go to the next programming step, press

4.6.25. Password

On this screen the password to modify the programming parameters is programmed.

To enter or modify the value, press the 🔳 key repeatedly, increasing the value of the flashing digit.

When the on-screen value is that desired, press the key to go to the next digit to modify the other values.

Default value: 1234.

Press the 🔜 key to finish programming the device.

4.7.- COMMUNICATIONS

The CVM-C5 have one RS-485 communications port, with MODBUS RTU ® protocol.

4.7.1. CONNECTIONS

The RS-485 cable must be wired with twisted pair cable with mesh shield (minimum 3 wires), with a maximum distance between the **CVM-C5** and the master unit of 1200 metres. A maximum of 32 **CVM-C5** units can be connected to this bus.

Use an intelligent RS-232 to RS-485 network protocol converter to establish the communications with the master unit.

Figure 16: RS-485 Connection diagram.

4.7.2. PROTOCOL

In the Modbus protocol, the CVM-C5 unit uses the RTU (Remote Terminal Unit) mode.

The Modbus functions implemented in the unit are as follows:

Function 03 and 04. Reading n Words (2 bytes). Function used for reading the parameters being measured by the CVM-C5. All parameters are 32-bits long, which is why to ask each parameter takes two Words.

Function 10. Writing multiple logs.

4.7.2.1. Selecting the active tariff

The **CVM-C5** has two tariffs, T1 and T2, selectable using the following Modbus function:

✓ Selecting the active tariff:

Address	Function	Registro inicial	No registers	No bytes	Tariff	CRC
NP ⁽¹⁾	10	1388	0001	02	000T ⁽²⁾	XXXX

⁽¹⁾ NP : Peripheral number

⁽²⁾ The selection of the active tariff is selected according to the following table:

Table 16:Selecting tariff.

Code	Tariff
0	Tariff T1
1	Tariff T2

Response:

Address	Function	Initial register	No registers	CRC
NP ⁽¹⁾	10	1388	0001	XXXX

✓ reading active tariff:

Address	Function	Initial register	No registers	CRC
NP ⁽¹⁾	04	1388	0001	xxxx

Response:

Address	Function	No bytes	No registers	CRC
NP ⁽¹⁾	04	02	000T ⁽²⁾	XXXX

4.7.2.2. Measurement variables.

All the adresses of Modbus memory are in Hexadecimal. For these variables is implemented the **Function 0x03** and **0x04**.

Table 17: Modbus memory map (Table 1)							
Parameter	Symbol	Instantaneous	Maximum	Mínimum	Units		
L1 Phase-Neutral voltage	V 1	00-01	84-85	100-101	V x 10		
L1 Current	A 1	02-03	86-87	102-103	mA		
L1 Active Power	kW 1	04-05	88-89	104-105	W		
L1 Reactive Power	kvar 1	06-07	8A-8B	106-107	var		
L1 Inductive Reactive Power	kvarL1	17C-17D	18E-18F	1A0-1A1	var		
L1 Capacitive Reactive Power	kvarC1	182-183	194-195	1A6-1A7	var		
L1 Apparent Power	kVAL1	188-189	19A-19B	1AC-1AD	VA		
L1 Power Factor	PF 1	08-09	8C-8D	108-109	x100		
L2 Phase-Neutral voltage	V 2	0A-0B	8E-8F	10A-10B	V x 10		
L2 Current	A 2	0C-0D	90-91	10C-10D	mA		
L2 Active Power	kW 2	0E-0F	92-93	10E-10F	W		
L2 Reactive Power	kvar 2	10-11	94-95	110-111	var		
L2 Inductive Reactive Power	kvarL2	17E-17F	190-191	1A2-1A3	var		
L2 Capacitive Reactive Power	kvarC2	184-185	196-197	1A8-1A9	var		
L2 Apparent Power	kVAL2	18A-18B	19C-19D	1AE-1AF	VA		
L2 Power Factor	PF 1	12-13	96-97	112-113	x100		
L3 Phase-Neutral voltage	V 3	14-15	98-99	114-115	V x 10		
L3 Current	A 3	16-17	9A-9B	116-117	mA		
L3 Active Power	kW 3	18-19	9C-9D	118-119	W		
L3 Reactive Power	kvar 3	1A-1B	9E-9F	11A-11B	var		
L3 Inductive Reactive Power	kvarL3	180-181	192-193	1A4-1A5	var		
L3 Capacitive Reactive Power	kvarC3	186-187	198-199	1AA-1AB	var		
L3 Apparent Power	kVAL3	18C-18D	19E-19F	1B0-1B1	VA		
L3 Power Factor	PF 3	1C-1D	A0-A1	11C-11D	x100		
Three-phase Active power	kW III	1E-1F	A2-A3	11E-11F	W		
Three-phase Inductive Power	kvarL III	20-21	A4-A5	120-121	var		
Three-phase Capacitive Power	kvarL III	22-23	A6-A7	122-123	var		
Three-phase Cos $oldsymbol{\phi}$	Cos φ III	24-25	A8-A9	124-125	x100		
Three-phase Power Factor	PF III	26-27	AA-AB	126-127	x100		
Frequency	Hz	28-29	AC-AD	128-129	Hz x 10		
L1 - L2 Voltage	V12	2A-2B	AE-AF	12A-12B	V x 10		
L2 - L3 Voltage	V23	2C-2D	B0-B1	12C-12D	V x 10		
L3 - L1 Voltage	V31	2E-2F	B2-B3	12E-12F	V x 10		
THD Voltage L1	%THDV1	30-31	B4-B5	130-131	% x 10		
THD Voltage L2	%THDV2	32-33	B6-B7	132-133	% x 10		
THD Voltage L3	%THDV3	34-35	B8-B9	134-135	% x 10		
THD Current L1	%THDI1	36-37	BA-BB	136-137	% x 10		
THD Current L2	%THDI2	38-39	BC-BD	138-139	% x 10		
THD Current L3	%THDI3	3A-3B	BE-BF	13A-13B	% x 10		
Three-phase Apparent Power	kvalll	42-43	C6-C7	142-143	VA		
Maximum demand	Md(Pd)	44-45	C8-C9	-	W/VA/mA		

Parameter	Symbol	Instantaneous	Maximum	Mínimum	Units
Three-phase current (average)	I_AVG	46-47	CA-CB	146-147	mA
Maximum demand I2	Md (Pd)	52-53	D6-D7	-	mA
Maximum demand I3	Md (Pd)	54-55	D8-D9	-	mA
Phase-Phase voltage (average)	VF-AVG	56-57	DA-DB	156-157	V x 10
Phase-Neutral voltage (average)	VL-AVG	58-59	DC-DD	158-159	V x 10

4.7.2.3. Energy variables

All the adresses of Modbus memory are in Hexadecimal. For these variables is implemented the **Function 0x03** and **0x04**.

Parameter	Symbol	Tariff 1	Tariff 2	Units			
Active energy	kWh III	3C-3D	6C-6D	Wh			
inductive reactive energy (kvarhL)	kvarhL III	3E-3F	6E-6F	varh			
capacitive reactive energy (kvarhC)	kvarhC III	40-41	70-71	varh			
apparent energy (kVAh)	kVAh III	5E-5F	72-73	kVAh			
Generated active energy	kWh III (-)	60-61	74-75	Wh			
Generated inductive reactive energy	kvarhL III (-)	62-63	76-77	varh			
Generated capacitive reactive energy	kvarhC III	64-65	78-79	varh			
Generated apparent energy	kVAh III	66-67	7A-7B	VAh			
CO ₂ emissions	KgCO ₂	68-69	7C-7D	KgCO ₂ x 100000			
Generation Cost	\$	6A-6B	7E-7F	\$ x 100000			
Hours per tariff	Hours	80-81	82-83	seg			

Table 18: Modbus memory map (Table 2).

4.7.3. EXEMPLE MODBUS QUESTION

Question: Value of the Phase L1 - Phase L2 voltage

Address	Function	Initial register	No register	CRC
0A	04	2A	0002	хххх

Address: 0A, Peripheral number: 10 in decimals.
Function: 04, Read function.
Initial register: 2A, register on which the reading will start.
No. of registers: 0002, number of registers read.
CRC: xxxx, CRC Character.

Response:

Address	Function	No Bytes	Register no 1	Register no 2	CRC
0A	04	04	0000	084D	XXXX

Address: 0A, Responding peripheral number: 10 in decimals.

Function: 04, Read function.

No. of bytes: 04, No. of bytes received.

Register: 0000084D, Value of the Phase L1 - Phase L2 voltage: V12 x 10 : 212.5 V **CRC: xxxx**, CRC Character.

Note: Every Modbus frame has a maximum limit of 20 variables (40 register).

5.- TECHNICAL FEATURES

AC Power supply						
Rated voltage		95 240 V~ ± 10%				
Frequency		50 60 Hz				
Consumption			3.5	6 VA		
Installation category			CAT III	300V		
		DC Power s	upply			
Rated voltage			105 272	v === + 10%		
Consumption			2	6W		
Installation category			CAT III	300V		
	Volta	ge measuren	nent circuit			
Nominal voltage (Un) 300V P-N, 520V P-P					V P-P	
Voltage measurement margin			5	120% Un		
Frequency measurement margin)		45	5 65Hz		
Input impedance			4	440 kΩ		
Min. voltage measurement (Vsta	rt)			10V p-n		
Installation category			CA	T III 300V		
	Curre	nt measurer	nent circuit			
Model	CVN	1-C5-ITF-485	CVM-C5-I	MC-485	CVM-C5-mV-485	
Nominal current (In)	/	′5A o/1A	/0.2	50 A	/0.333 A	
Current measurement margin	5	110% In	5110% ln		5110% In	
Maximum current, impulse < 1s		100 A	100	A	1.2 In	
Minimum current measurement (Istart)		10 mA	MC1 0.25 A	MC3 0.12 A	- 6.66 mA	
Installation Category	C	AT III 300V	CAT III	300V	CAT III 300V	
	Ме	asurement a	iccuracy			
Model	CVM-C	5-ITF-485	CVM-C5-M	C-485	CVM-C5-mV-485	
Voltage measurement	0	.5%	0.5%		1%	
Current measurement	0.5%	± 1 digit	0.5% ± 1 0	digit	1%	
Power measurement	1% :	⊧ 1 digit	1% ± 1 d	igit	2%	
Active energy measurement	Cl	ass 1	Class 2	1	Class 2	
Reactive energy measurement	Cl	ass 1	Class 2	1	Class 2	
		Communica	tions			
Bus			R	S-485		
Protocol			Mode	ous RTU		
Baud rate			1200 - 2400 - 4	800 - 9600 -	19200	
Stop bits		1 - 2				
Parity			without -	even - odd		
Pu	lse outp	ut(CVM-C5	-xxx-RS485-C)	1)		
Туре			1	NPN		
Maximum voltage			24	V		
Maximum current			5	0 mA		
Maximum frequency		5 pulses / sec				

	(Continuation) Pu	(Continuation) Pulse output (CVM-C5-xxx-RS485-C) (1)						
	Minimum pulse width	100 ms (Ton: 100 ms, Toff: 100 ms)						
Digital input (CVM-C5-xxx-RS485-I) ⁽¹⁾								
	Type Potential free contact							
	Insulation	Optoisolated						
(1)	⁽¹⁾ Must be connected to SELV circuit.							
	User interface							
	Display	LCD (60x54mm)						
	Keyboard	3 keys						
	Er	nvironmental features						
	Operating temperature	-5°C +45°C						
	Storage temperature	-10°C +50°C						
	Relative humidity (non-condensing)	5 95%						
	Maximum altitude	2000 m						

⁽²⁾ This pollution degree hasn't been tested by UL.

Protection degree (2)

Mechanical features					
Dimensions (Figure 16)	96.7x96.7x62.6 mm				
Weight	480 gr				
Enclosure	V0 self-extinguishing plastic				
Attachment	Panel				

IP31

Front panel: IP51

Figure 17:Dimensions.

Standards				
Safety of electronic measuring units	IEC 61010: 2010			
Electromagnetic compatibility (CEM). Part 6-4: Generic standards. Emissions standard for industrial environments.	UNE-EN 61000-6-4:2007			
Electromagnetic compatibility (CEM). Part 6-2: Generic standards. Immunity for industrial environments.	UNE-EN 61000-6-2:2006			
Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements	UL/CSA 61010-1 3rd edition			

6.- MAINTENANCE AND TECHNICAL SERVICE

In the case of any query in relation to unit operation or malfunction, please contact the **CIRCUTOR, SA** Technical Support Service.

Technical Assistance Service

Vial Sant Jordi, s/n, 08232 - Viladecavalls (Barcelona) Tel: 902 449 459 (España) / +34 937 452 919 (outside of Spain) email: sat@circutor.es

7.- GUARANTEE

CIRCUTOR guarantees its products against any manufacturing defect for two years after the delivery of the units.

CIRCUTOR will repair or replace any defective factory product returned during the guarantee period.

	 No returns will be accepted and no unit will be repaired or replaced if it is not accompanied by a report indicating the defect detected or the reason for the return. The guarantee will be void if the units has been improperly used or the storage, installation and maintenance instructions listed in this manual have not been followed. "Improper usage" is defined as any operating or storage condition contrary to the national electrical code or that surpasses the limits indicated in the technical and environmental features of this manual. CIRCUTOR accepts no liability due to the possible damage to the unit or other parts of the installation, nor will it cover any possible sanctions derived from a possible failure, improper installation or "improper usage" of the unit. Consequently, this guarantee does not apply to failures occurring in the following cases: Overvoltages and/or electrical disturbances in the supply; Water, if the product does not have the appropriate IP classification; Poor ventilation and/or lack of maintenance; Buyer repairs or modifications without the manufacturer's authorisation.
--	---

8.- CE CERTIFICATE

DECLARACIÓN DE CONFORMIDAD CE CE DECLARATION OF CONFORMITY DECLARATION DE CONFORMITE CE

Por la presente We hereby Par le présent CIRCUTOR, S.A.

Con dirección en: With address in: Avec adresse à: Vial Sant Jordi, s/n 08232 VILADECAVALLS (Barcelona) ESPAÑA

Declaramos bajo nuestra responsabilidad que el producto: We declare under our responsibility that the product: Nous déclarons sous notre responsabilité que le produit:

Analizador de redes eléctricas

Network power analyzer Analyseur de réseaux électrique Serie: CVM-C5

Marca CIRCUTOR Brand Marque

Siempre que sea instalado, mantenido y usado en la aplicación para la que ha sido fabricado, de acuerdo con las normas de instalación aplicables y las instrucciones del fabricante,

Provided that it is installed, maintained and used in application for which it was made, in accordance with relevant installation standards and manufacturer's instructions,

Toujours qu'il soit installé, maintenu et utilisé pour l'application par lequelle il a été fabriqué, d'accord avec les normes d'installation applicables et suivant les instructions du fabricant,

Cumple con las prescripciones de la(s) Directiva(s):

Complies with the provisions of Directive(s): Accomplie avec les prescriptions de la (les) Directive(s):

> 2014/35/CE: Low Voltage Directive 2004/108/CE: Electromagnetic Compatibility Directive 2011/65/CE: Rohs Directive

Está en conformidad con la(s) siguiente(s) norma(s) u otro(s) documento(s) normativo(s) : It is in conformity with the following standard(s) or other normative document(s) : Il est en conformité avec la (les) norme(s) suivante(s) ou autre(s) document(s) normatif (ves) :

> IEC 61010-1:2010 IEC 61000-6-2:2005 IEC 61000-6-4:2011 UL 61010-1, 3rd Edition, 2012-5

Año de marcado "CE": 2013 Year of affixing "CE" marking: An de mise en application du marquage "CE":

Revisado en Viladecavalls Fecha: 11/04/2016 Date: Date :

Nombre y Firma: Name and signature : Nom et signature :

Ferran Gil Torné General Manager Directeur Général **Sello** Stamp Tampon

CIRCUTOR, SA - Vial Sant Jordi, s/n - 08232 Viladecavalls (Barcelona) Spain - Tel. (+34) 937 452 900 - central@circutor.es

CIRCUTOR, SA Vial Sant Jordi, s/n 08232 -Viladecavalls (Barcelona) Tel.: (+34) 93 745 29 00 - Fax: (+34) 93 745 29 14 www.circutor.es central@circutor.es